一.鑄造合金的收縮性
1. 收縮的基本概念
液態合金當溫度下降而由液態轉變為固態時,因為金屬原子由近程有序逐漸轉變為遠程有序,以及空穴的減少及消失,一般都會發生體積減少。液態合金凝固后,隨溫度的繼續下降,原子間距離還要縮短,體積也近一步減少。鑄造合金在液態、凝固和固態冷卻的過程中,由于溫度的降低而發生體積減小的現象,稱為鑄造合金的收縮性。
收縮又是鑄件中許多缺陷,如縮孔、縮松、應力、變形、和裂紋等產生的基本原因,是鑄造合金的重要鑄造性能之一。它對鑄件(如獲得符合要求的幾何形狀和尺寸,致密的優質鑄件)有著很大的影響。
鑄造合金由液態轉變為常溫時的體積改變量來表示,稱為體積收縮。合金在固態時的收縮,除了用體積改變量表示外,還可用長度該變量來表示,稱為線收縮。因為在設計和制造模樣時,線收縮更有意義。線收縮率一般是體收縮率的1/3.合金在收縮要經歷三個階段:液態收縮階段;凝固收縮階段;固態收縮階段。
(1)液態收縮 當液態合金從澆注溫t澆冷卻至開始凝固的液相線溫度t液的收縮,由于合金處于液體狀態,故稱其為液態收縮,表現為型腔內液面的降低。
(2)凝固收縮 對于具有一定溫度范圍的的合金,由液態轉變為固態時,由于合金處于凝固狀態,故稱為凝固收縮。這類合金的凝固體收縮主要包括溫度降低(于合金的結晶溫度范圍有關)和狀態改變(狀態改變時的體積變化)兩部分。
對于少數合金及金屬,因其凝固體收縮率為負值,所以凝固時發生體積增大。(Bi、Si、Bi-Si合金和灰鑄鐵)。
液態收縮和凝固收縮是鑄件產生縮孔和縮松的基本原因。
(3)固態收縮 當鑄造合金從固相線溫度t固冷卻到室溫t室的收縮,由于合金處于固體狀態,故稱為固態收縮。
但在實際生產中,由于固態收縮往往表現為鑄件外形尺寸的減小,因此一般采用線收縮率來表示。
如果合金的線收縮不受到鑄型外部條件的阻礙,稱為自由收縮。負則,為受阻線收縮。
鑄造合金的線收縮不僅對鑄件的尺寸精度有著直接影響,而且是鑄件中產生應力、裂紋、變形的基本原因。
2. 鑄件線收縮率
以上討論的鑄造合金收縮率只與合金的化學成分、收縮系數、溫度變化以及相變時體積改變等因素有關。在進行鑄件工藝設計時,考慮到收縮,需要將模樣尺寸放大,模樣尺寸L模與鑄件尺寸L件之間存在如下關系。£=L模-L鑄件/L模×100%
鑄件的鑄造收縮率不僅與所用合金的因素有關,而且還與鑄型工藝特點、鑄件結構形狀以及合金在熔煉過程中溶解氣體量等因素有關。
二、鑄件中的縮孔和縮松
1.縮孔、縮松的基本概念
鑄件在冷卻凝固過程中,由于合金的液態收縮和凝固收縮,往往在鑄件most后凝固的地方出現孔洞。容積大而且比較集中的孔洞稱為縮孔;細小而且分散的孔洞稱為縮孔。縮孔的形狀不規則,表面粗糙,可以看到發達的樹枝晶末梢,故可以明顯地與氣孔區別開來。
鑄件中若有縮孔、縮松存在,一方面會使鑄件有效承載面積減小,另一方面引起應力集中,且都會使鑄件的力學性能明顯降低。同時還降低鑄件的氣密性和物理化學性能。特別是對于耐壓零件,則容易發生滲漏而使鑄件報廢。
2縮孔的形成
縮松形成的基本原因和縮孔一樣,主要是由于合金的結晶溫度范圍較寬,樹枝晶發達,合金液幾乎同時凝固,液態和凝固收縮形成的細小、分散孔洞得不到外部金屬液的補充而造成。
鑄件中形成縮孔和縮松的傾向與合金的成分之間有一定的規律性。定向凝固的合金傾向于產生集中縮孔;糊狀凝固的合金傾向于產生縮松,其縮孔和縮松的數量可以相互轉換,但他們總容積基本保持不變。
3. 影響縮孔、縮松大小的因素及防治措施
鑄造合金的液態收縮愈大,則縮孔形成的傾向愈大;合金的結晶溫度范圍愈寬,凝固收縮愈大,則縮松形成的傾向愈大。凡能促使合金減小液態和凝固期收縮工藝措施(如調整化學成分,降低澆注溫度和減慢澆注速度,增大鑄件的激冷能力,增加在鑄件凝固過程中的補縮能力,對于灰口鑄件可促進凝固期間的石墨化等),都有利于減小縮孔和縮松的形成。
針對合金的收縮和凝固特點制定正確的鑄造工藝,使鑄件在凝固過程中建立良好的補縮條件,盡可能地使縮松轉化為縮孔,并使縮孔出現在most后的凝固位置。
要使鑄件在凝固過程建立良好的補縮條件,主要是通過控制鑄件凝固方式(采用設置冒口和冷鐵配合)使之符合“定向凝固原則”或“同時凝固原則”。